Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401234, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520380

RESUMEN

Eutectic gallium-indium liquid metal (EGaIn-LM), with a considerable capacity and unique self-healing properties derived from its intrinsic liquid nature, gains tremendous attention for lithium-ion batteries (LIBs) anode. However, the fluidity of the LM can trigger continuous consumption of the electrolyte, and its liquid-solid transition during the lithiation/de-lithiation process may result in the rupture of the solid electrolyte interface (SEI). Herein, LM is employed as an initiator to in situ assemble the 3D hydrogel for dynamically encapsulating itself; the LM nanoparticles can be homogeneously confined within the hydrogel-derived carbon framework (HDC) after calcination. Such design effectively alleviates the volume expansion of LM and facilitates electron transportation, resulting in a superior rate capability and long-term cyclability. Further, the "dual-layer" SEI structure and its key components, including the robust LiF outer layer and corrosion-resistant and ionic conductive LiGaOx inner layer are revealed, confirming the involvement of LM in the formation of SEI, as well as the important role of carbon framework in reducing interfacial side reactions and SEI decomposition. This work provides a distinct perspective for the formation, structural evolution, and composition of SEI at the liquid/solid interface, and demonstrates an effective strategy to construct a reliable matrix for stabilizing the SEI.

2.
Nat Ecol Evol ; 7(11): 1771-1777, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749401

RESUMEN

Globally, rising food demand has caused widespread biodiversity and ecosystem services loss, prompting growing efforts in ecological protection and restoration. However, these efforts have been significantly undercut by further reclamation for cropland. Focusing on China, the world's largest grain producer, we found that at the national level from 2000 to 2015, reclamation for cropland undermined gains in wildlife habitat and the ecosystem services of water retention, sandstorm prevention, carbon sequestration and soil retention by 113.8%, 63.4%, 52.5%, 29.0% and 10.2%, respectively. To achieve global sustainability goals, conflicts between inefficient reclamation for cropland and natural capital investment need to be alleviated.


Asunto(s)
Biodiversidad , Ecosistema , Suelo , China , Productos Agrícolas
3.
Adv Mater ; 35(46): e2304669, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672604

RESUMEN

Solar rechargeable zinc-air battery is a promising approach for capturing and storing intermittent solar energy through photoelectrochemical reactions. However, unassisted photo-charging of zinc-air batteries is challenging due to suboptimal carrier accumulation on photoelectrodes, resulting in sluggish reaction kinetics. Here, unassisted photo-charging of zinc-air battery is achieved by investigating anisotropic photogenerated charge separation on a series of representative semiconductors (ZnIn2 S4 , TiO2 , and In2 O3 ), among which the exceptional anisotropic charge separation on a ZnIn2 S4 photoelectrode is revealed based on anisotropic charge diffusion capabilities. The charge separation is facet-dependent, which is observed using Kelvin probe force microscopy, verifying a cause-and-effect relationship between the photo-charge accumulation on photoelectrodes and their photo-charging performance in zinc-air batteries. This work achieves an unassisted photo-charging current density of 1.9 mA cm-2 with a light-to-chemical energy conversion efficiency of 1.45%, highlighting the importance of anisotropic semiconductors for unassisted photo-charging of zinc-air batteries via efficient photogenerated charge separation.

4.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2822-2828, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36384619

RESUMEN

To understand the synergetic features of economy, society, and ecology in cities, we established an urban ecological-economic-social synergetic index evaluation system from three aspects (per capita green area, per capita GDP, and life expectancy per capita) and created an urban ecological-economic-social synergetic index eva-luation method. We analyzed the synergetic features by comparing the ecological-economic-social synergetic index and comprehensive function scores of 35 typical cities in China. The differences in ecological-economic-social synergy and function score for different city sizes and administrative divisions were investigated, while the synergy level of cities were classified. The results showed that the average ecological-economic-social synergetic index of 35 cities in China was 28.79, with the highest of 3.83 and the lowest of 63.04 in 2016. The synergetic index, urban econo-mic function, and social function were significantly positively correlated with urban population sizes and economic sizes. There were significant differences in synergetic index among cities with different population sizes, economic sizes, and administrative functions. The urbanization in China was still in the status of functional imbalance. Urban development was conducive to improve cities' function, but did not effectively improve the synergy of ecology, economy, and society. The ecological function of cities significantly affected urban synergy, which indicated that the poor urban ecological function was the main restrictive factor for urban synergy in China.


Asunto(s)
Conservación de los Recursos Naturales , Urbanización , China , Ciudades , Ecosistema
5.
Nat Ecol Evol ; 5(9): 1309-1316, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34312523

RESUMEN

In addition to habitat loss and fragmentation, demographic processes-the vagaries of births, deaths and sex ratio fluctuations-pose substantial threats to wild giant panda populations. Additionally, climate change and plans for the Giant Panda National Park may influence (in opposing directions) the extinction risk for wild giant pandas. The Fourth National Giant Panda Census showed pandas living in 33 isolated populations. An estimated 259 animals live in 25 of these groups, ~14% of the total population. We used individual-based models to simulate time series of these small populations for 100 years. We analysed the spatial pattern of their risk of extinction under current conditions and multiple climate change models. Furthermore, we consider the impact of the proposed Giant Panda National Park. Results showed that 15 populations face a risk >90%, and for 3 other populations the risk is >50%. Of the 15 most at-risk populations, national parks can protect only 3. Under the Representative Concentration Pathway 8.5 climate change scenario, the 33 populations will probably further divide into 56 populations. Some 41 of them will face a risk >50% and 35 face a risk >90%. Although national parks will probably connect some fragmented habitats, 26 populations will be outside national park planning. Our study gives practical advice for conservation policies and management and has implications for the conservation of other species in the world that live in isolated, fragmented habitats.


Asunto(s)
Ursidae , Animales , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Parques Recreativos
6.
Curr Biol ; 29(18): 3065-3071.e2, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31474534

RESUMEN

To counter their widespread loss, global aspirations are for no net loss of remaining wetlands [1]. We examine whether this goal alone is sufficient for managing China's wetlands, for they constitute 10% of the world's total. Analyzing wetland changes between 2000 and 2015 using 30-m-resolution satellite images, we show that China's wetlands expanded by 27,614 km2 but lost 26,066 km2-a net increase of 1,548 km2 (or 0.4%). This net change hides considerable complexities in the types of wetlands created and destroyed. The area of open water surface increased by 9,110 km2, but natural wetlands-henceforth "marshes"-decreased by 7,562 km2. Of the expanded wetlands, restoration policies contributed 24.5% and dam construction contributed 20.8%. Climate change accounted for 23.6% but is likely to involve a transient increase due to melting glaciers. Of the lost wetlands, agricultural and urban expansion contributed 47.7% and 13.8%, respectively. The increase in wetlands from conservation efforts (6,765 km2) did not offset human-caused wetland losses (16,032 km2). The wetland changes may harm wildlife. The wetland loss in east China threatens bird migration across eastern Asia [2]. Open water from dam construction flooded the original habitats of threatened terrestrial species and affected aquatic species by fragmenting wetland habitats [3]. Thus, the "no net loss" target measures total changes without considering changes in composition and the corresponding ecological functions. It may result in "paper offsets" and should be used carefully as a target for wetland conservation.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos , Agricultura , Animales , Biodiversidad , China , Cambio Climático , Ecosistema , Especies en Peligro de Extinción , Humanos , Imágenes Satelitales/métodos , Humedales
7.
Nat Commun ; 10(1): 2149, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089139

RESUMEN

Electrocatalytic water oxidation is a rate-determining step in the water splitting reaction. Here, we report one single atom W6+ doped Ni(OH)2 nanosheet sample (w-Ni(OH)2) with an outstanding oxygen evolution reaction (OER) performance that is, in a 1 M KOH medium, an overpotential of 237 mV is obtained reaching a current density of 10 mA/cm2. Moreover, at high current density of 80 mA/cm2, the overpotential value is 267 mV. The corresponding Tafel slope is measured to be 33 mV/dec. The d0 W6+ atom with a low spin-state has more outermost vacant orbitals, resulting in more water and OH- groups being adsorbed on the exposed W sites of the Ni(OH)2 nanosheet. Density functional theory (DFT) calculations confirm that the O radical and O-O coupling are both generated at the same site of W6+. This work demonstrates that W6+ doping can promote the electrocatalytic water oxidation activity of Ni(OH)2 with the highest performance.

8.
Proc Natl Acad Sci U S A ; 116(17): 8623-8628, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30952787

RESUMEN

A major challenge in transforming development to inclusive, sustainable pathways is the pervasive and persistent trade-off between provisioning services (e.g., agricultural production) on the one hand and regulating services (e.g., water purification, flood control) and biodiversity conservation on the other. We report on an application of China's new Ecological Development Strategy, now being formally tested and refined for subsequent scaling nationwide, which aims to mitigate and even eliminate these trade-offs. Our focus is the Ecosystem Function Conservation Area of Hainan Island, a rural, tropical region where expansion of rubber plantations has driven extensive loss of natural forest and its vital benefits to people. We explored both the biophysical and the socioeconomic options for achieving simultaneous improvements in product provision, regulating services, biodiversity, and livelihoods. We quantified historic trade-offs between rubber production and vital regulating services, finding that, over the past 20 y (1998-2017), there was a 72.2% increase in rubber plantation area, leading to decreases in soil retention (17.8%), water purification [reduced retention of nitrogen (56.3%) and phosphorus (27.4%)], flood mitigation (21.9%), carbon sequestration (1.7%), and habitat for biodiversity (6.9%). Using scenario analyses, we identified a two-pronged strategy that would significantly reduce these trade-offs, enhancing regulating services and biodiversity, while simultaneously diversifying and increasing product provision and improving livelihoods. This general approach to analyzing product provision, regulating services, biodiversity, and livelihoods has applicability in rural landscapes across China, South and Southeast Asia, and beyond.


Asunto(s)
Conservación de los Recursos Naturales , Ecología , Biodiversidad , China , Ecología/métodos , Ecología/organización & administración , Ecosistema , Monitoreo del Ambiente , Humanos , Pobreza/prevención & control
9.
Artículo en Inglés | MEDLINE | ID: mdl-30781813

RESUMEN

Landscape change is an important aspect of coastal ecological conservation and has an essential influence on the sustainable development of the coastal economy. With remoting-sensing (RS) images between 2000, 2005, 2010, and 2015, using geographic information system (GIS) technologies, we examined ecosystem spatial changes in the Bohai coastal zone. Results showed that wetlands, mainly constituted by reservoirs/ponds, were the dominant landscape types. The urban ecosystem has the largest area increment and the fastest growth rate from 2000 to 2015. The quantification of landscape metrics revealed that spatial patterns have changed significantly, and the change direction of these ecosystems had moved toward increased heterogeneity and fragmentation. In addition, natural and socio-economic data were used to analyze the major driving forces triggering ecosystem spatial changes through redundancy analysis (RDA). The results revealed that the output of aquatic products (AQ) and population (Pop) were the main factors related to wetland ecosystem change. Pop and gross domestic product per capita (GDPpc) were closely related to the urban ecosystem change. Annual mean temperature (ATm), crop acreage (CA), and grain yield (GY) had positive correlations with the agriculture ecosystem changes.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Agricultura , China , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Fenómenos Geológicos , Urbanización , Humedales
10.
Sci Total Environ ; 631-632: 887-894, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29727999

RESUMEN

The conservation impacts of policies that promote large-scale ecological restoration of ecosystem services and socio-economic development are well documented around the world. However, the effect of socio-economic development resulting from such policies on ecosystem services is rarely analysed, although it is important to do so if these policies are to be sustainable. We analysed the socio-economic impacts of soil conservation services from 2000 to 2015 in the Yangtze River Basin under the Grain to Green Programme (GTGP). Also we assessed the driving forces behind the programme: conservation policies, urbanization, agricultural development, and population growth. Our results show that during 2000-2015, cultivated area decreased by 7.5%, urban area increased by 67.5%, forest area increased by 2.1%, and soil erosion was reduced by 19.5%. The programme not only contributed significantly to an improvement in soil conservation services but also enhanced them significantly through faster urbanization. Furthermore, vegetation cover and crop yields increased synergistically, mainly due to high-efficiency agriculture that reduced the negative effect of the GTGP on agricultural production. Overall determining the indirect and direct effects of the GTGP on soil conservation and agricultural production are important for furthering our understanding of the long-term effects of ecological restoration policies, and the present study offers practical insights for ecological restoration of other watersheds.

11.
Nat Ecol Evol ; 1(11): 1635-1638, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28963522

RESUMEN

The conservation status of the iconic giant panda is a barometer of global conservation efforts. The IUCN Red List has downgraded the panda's extinction risk from "endangered" to "vulnerable". Newly obtained, detailed GIS and remotely sensed data applied consistently over the last four decades show that panda habitat covered less area and was more fragmented in 2013 than in 1988 when the species was listed as endangered.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Tecnología de Sensores Remotos/métodos , Ursidae , Animales , China , Modelos Biológicos
12.
Ecol Evol ; 7(16): 6220-6230, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861227

RESUMEN

Global carbon cycles are impacted by human activity primarily via fossil fuel combustion and forest carbon budget alterations. In this study, the temporal dynamics and spatial distribution of forest biomass carbon (FBC) stock and density in China were analyzed to assess the large-scale effects of humans on FBC. The results indicated that from 1977 to 2013, the FBC stock increased by 62.9%, from 4,335 to 7,064 Tg C, owing to human-driven forestation and ecological restoration programs. Because of intensive human impacts, 44.2%-54.6% of the FBC stock was concentrated in four provinces (Heilongjiang, Yunnan, Inner Mongolia, and Sichuan) and the FBC density increased from the densely populated southeastern provinces to the sparsely populated northeastern and western provinces. On a spatial scale, the FBC density was significantly negatively related to population density, and the degree of the dependence of the FBC density on population density has been declining since 1998. This improvement in human-forest relations is related to economic development and programs in China that have promoted forestation and reduced deforestation. These results suggest that human impacts, including forestation, deforestation, population density, and economic development, have played significant roles in determining the temporal and spatial variations of FBC in the anthropogenic era. Moreover, our findings have implications for forest management and improvement of the forest carbon sink in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...